Certificate course		Biogas Technology		
	(Even Semester)			
PO's Aligned – As listed below		Credit- 02 (T-1, P-1), Total Number of Teaching Hours- 45Hrs		

PROGRAMME OUTCOMES (POs)

- **PO-1:** Experimental & Analytical Proficiency: The curriculum emphasizes mastery in designing and conducting scientific experiments using standard methodologies. Students critically evaluate and interpret data to derive reliable, reproducible scientific conclusions.
- **PO-2:**Environmental Consciousness & Sustainability: The program cultivates the ability to apply analytical knowledge to global sustainability challenges. Students are encouraged to propose evidence-based solutions that align with soil analysis and sustainable development goals

Programme Specific Outcomes (PSOs)

- **PSO1:**Mastery in Microbiology and Innovations: Candidates will acquire proficiency in anaerobic microbiological techniques to produce biogas from various feedstocks and its applications.
- **PSO2:**Application of Microbiology to Health, Agriculture, and Industry: Candidates will apply microbiological knowledge to develop practical solutions in environmental biotechnology, and agriculture..

Course Outcomes (COs)

CO1: Explain the principles of anaerobic digestion of feedstocks to produce biogas

CO2:Apply methods to operate, maintain, and evaluate different types of biogas plant models; analyze biogas; and assess the economic and environmental viability of biogas systems

Mapping matrix of POs, PSOs and COs

	POs		PSOs			
CO \ PO	1	2	CO Avg	1	2	CO Avg
CO1	2	3	2.5	1	2	1.5
CO2	3	3	3.0	2	2	2.0
PO /CO Avg	2	3	2.5	3	3	3.0

(1-weak correlation; 2-medium correlation; 3-strong correlation)

This course will provide theoretical as well as practical knowledge about Biogas Technology.

Teaching Pedagogy

- 1. Lecture method
- 2. Seminar method
- 3. Demonstrations method

Teaching Methods and Tools

- 1.Direct Teaching using Black board,
- 2. Presentations,
- 3. Multimedia resources,
- 4. Diagrams and Layouts,
- 5. Group discussion and activity,
- 6. Experimentation,
- 7. Hands on training

	Detailed Syllabus						
	Unit-1 Theory (Credit: 01, Teaching Hours: 15)						
	Title	Number of Teaching					
		Hours					
1	Introduction: Definition, History of biogas	1					
2	How biogas is produced? (Biochemistry)	2					
3	Use of different raw materials for biogas production	4					
4	Factors affecting the production of biogas	4					
5	Utilization of digested slurry	3					
6	Economics of biogas plant	1					
	Unit-2 Practical (Credit: 01, Teaching Hours: 30)						
7	Qualitative (by Orset apparatus) and quantitative (by water	9					
	displacement method) analysis of biogas production						
8	Types of biogas plant models	5					
9	How to operate the biogas plants?	4					
10	Maintenance of biogas plants	7					
11	Uses of biogas	5					

Assessment Method			
Internal/Online Assessment (40%)	1. Written test (20 Marks)		
	2 .Quiz / Group Discussion (10 Marks)		
	3. Assignments / Seminar (10 Marks)		
External Assessment (60%)	Term End Theory examination		
	(Written test 60 Marks)		

References-

- 1. Biogas Systems: Principle and Applications, K.M.Mital, New Age International(P) Limited, New Delhi,(1996)
- 2. Biogas Technology: A Practical Handbook, K. C. Khandelwal, S.S. Mahdi, Tata McGraw-Hill, 1989.